Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Hazard Mater Adv ; 6: 100078, 2022 May.
Article in English | MEDLINE | ID: covidwho-2280898

ABSTRACT

The lockdown imposed in Delhi, due to the second wave of the COVID-19 pandemic has led to significant gains in air quality. Under the lockdown, restrictions were imposed on movement of people, operation of industrial establishments and hospitality sector amongst others. In the study, Air Quality Index and concentration trends of six pollutants, i.e. PM2.5, PM10, NO2, SO2, CO, and O3 were analysed for National Capital Territory of Delhi, India for three periods in 2021 (pre-lockdown: 15 March to 16 April 2021, lockdown: 17 April to 31 May 2021 and post-lockdown: 01 June to 30 June). Data for corresponding periods in 2018-2020 was also analysed. Lockdown period saw 6 days in satisfactory AQI category as against 0 days in the same category during the pre-lockdown period. Average PM2.5, PM10, NO2 and SO2 concentrations reduced by 22%, 31%, 25% and 28% respectively during lockdown phase as compared to pre-lockdown phase, while O3 was seen to increase. Variation in meteorological parameters and correlation of pollutants has also been examined. The significant improvement arising due to curtailment of certain activities in the lockdown period indicates the importance of local emission control, and helps improve the understanding of the dynamics of air pollution, thus highlighting policy areas to regulatory bodies for effective control of air pollution.

2.
J Health Pollut ; 10(28): 201201, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-979201

ABSTRACT

BACKGROUND: Since March 2020, the number of confirmed COVID-19 positive cases have steadily risen in India. Various preventive measures have been taken to contain the spread of COVID-19. With restrictions on human activities, anthropogenic emissions driving air pollution levels have seen a reduction since March 23, 2020, when the government imposed the first nationwide shutdown. The landlocked Indo-Gangetic Plain (IGP) has many densely-populated cities, witnessing high levels of particulate matter due to both nature-driven and anthropogenic elements. Kanpur is an urban metropolis in the IGP with high aerosol loading, and this paper explores the impact of restricted anthropogenic activities on aerosol characteristics in Kanpur. OBJECTIVES: This study aims to investigate the change in aerosol optical depth level and its related parameters during the shutdown phases in Kanpur city compared to the same time periods in 2017-2019. METHODS: Aerosol optical properties such as aerosol optical depth (AOD) at 500 nm, Angstrom exponent (AE), fine mode fraction (FMF) of AOD at 500 nm and single scattering albedo (SSA) at 440 nm were obtained from the Aerosol Robotic Network (AERONET) station operating in Kanpur from the 1st March to the 30th April for 2017-2020. RESULTS: A significant decrease in aerosol loading was observed during the shutdown period compared to the pre-and partial shutdown periods in 2020 as well as during the same time periods of 2017-2019. Mean AOD, FMF and SSA were 0.37, 0.43 and 0.89, respectively, during the shutdown period in 2020. A 20-35% reduction in mean AOD levels was observed during the shutdown period in 2020 as compared to the same period in 2017-2019. CONCLUSIONS: The shutdown led to an improvement in air quality due to decreases in anthropogenic emissions. As fine particles, typically from urban and industrial emissions, dominate episodic air pollution events, this study can be further utilized by the scientific community and regulators to strengthen the emergency response action plan to check high pollution episodes in Kanpur city until cleaner technologies are in place. COMPETING INTERESTS: The authors declare no completing financial interests.

SELECTION OF CITATIONS
SEARCH DETAIL